Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liliana Dobrzańska and Greta Heydenrych* ${ }^{*}$

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa
\# Permanent address: Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.

Correspondence e-mail: gheyden@sun.ac.za

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.070$
$w R$ factor $=0.165$
Data-to-parameter ratio $=10.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,4-Bis(methoxymethyl)-1,3,5-trimethylbenzene

The title compound, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$, displays polar ordering owing to intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that link the molecules to form a three-dimensional network. A twofold rotation axis bisects the ring, passing through the unsubstituted C atom, the para-C atom and C of the attached methyl group.

Comment

In our studies of complexes generated from ditopic ligands (Dobrzańska, 2005; Dobrzańska, Lloyd et al., 2005; Dobrzańska, Raubenheimer et al., 2005; Dobrzańska et al., 2006; Dobrzańska \& Lloyd, 2006), we have unexpectedly obtained single crystals of the title compound, (I).

(I)

The asymmetric unit of (I) (Fig. 1) consists of half a molecule. The two methoxy groups adopt the trans configuration with respect to the plane of the benzene ring, allowing the molecule to straddle a twofold rotation axis along the c axis. The twofold axis passes through $\mathrm{C} 4, \mathrm{C} 1$ and C 5 . As a result, the methyl group on the twofold axis is disordered. The $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 8$ torsion angle, which defines the rotation of the $\mathrm{H}_{2} \mathrm{C}-\mathrm{O}$ bonds out of the plane of the central benzene ring, is -74.5 (4) ${ }^{\circ}$. 2,4 -Bis(methoxymethyl)-1,3,5-trimethylbenzene molecules pack parallel to the $b c$ plane and display polar ordering (Fig. 2), most likely due to the formation of intermolecular $\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\mathrm{i}}$ hydrogen bonds [symmetry code: (i) $\left.x-\frac{1}{4}, \frac{1}{4}-y, z-\frac{1}{4}\right]$ (Fig. 3 and Table 1). A similar influence of hydrogen bonding on ordering of molecules was observed for 2,6-lutidine, where the presence of linear $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions results in macroscopically polar crystals (Bond et al., 2001). Intramolecular $\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O} 8$ hydrogen bonds are also formed (Table 1). The aromatic rings are at an angle of 17.43° relative to the $b c$ plane. The molecules are stacked in a herringbone-like pattern as a result of forming a threedimensional hydrogen-bonded network. $\pi-\pi$ Interactions between the benzene rings in adjacent layers is not possible because the aromatic groups are tilted at an angle of 34.86° (centroid-to-centroid) relative to one another. Since the centroid-to-centroid distance between alternate layers is $8.186 \AA$ and the offset is complete, $\pi-\pi$ stacking is implausible in this instance as well.

Received 7 September 2006 Accepted 18 September 2006

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabeled atoms are related to labeled atoms by the symmetry operation $-x,-y, z$. Both methyl group disorder components are shown.

Experimental

Colorless crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the solution after an SN_{2} reaction of 2,4-bis-(chloromethyl)-1,3,5-trimethylbenzol (0.7238 g) with 4,5-dichloroimidazole in methanol (molar ratio: 0.0033:0.0233).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$
$M_{r}=208.29$
Orthorhombic, Fdd2
$a=14.253$ (16) \AA
$b=20.66$ (2) A
$c=8.057$ (9) \AA
$V=2373(4) \AA^{3}$

Data collection

Bruker APEX CCD area-detector diffractometer
ω scans
Absorption correction: none
3575 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.165$
$S=1.09$
747 reflections
73 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5B $\cdots \mathrm{O} 8$	0.98	2.45	$3.172(5)$	131
C7-H7A $^{\mathrm{i}}$	0.98	2.57	$3.542(7)$	166

Symmetry code: (i) $x-\frac{1}{4},-y+\frac{1}{4}, z-\frac{1}{4}$.
H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95,0.99$ and $0.98 \AA$ for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})$, where $x=1.5$ for methyl H , and $x=1.2$ for all other H atoms. The

Figure 2
Polar ordering of molecules in the $b c$ plane of the unit cell.

Figure 3
The hydrogen bond pattern (dashed red lines), as viewed along the c axis.
methyl group C5 has its H atoms disordered over two sets of sites, with 0.5 occupancy. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: SHELXL97.

The authors thank the Claude Harris Leon Foundation and the National Research Foundation of South Africa for financial support.

organic papers

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bond, A. D., Davies, J. E. \& Kirby, A. J. (2001). Acta Cryst. E57, o1242-o1244. Bruker (2001). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
Dobrzańska, L. (2005). Acta Cryst. E61, o4113-o4115.

Dobrzanska, L. \& Lloyd, G. O. (2006). Acta Cryst. E62, o1205-o1207
Dobrzańska, L., Lloyd, G. O., Raubenheimer, H. G. \& Barbour, L. J. (2005). J. Am. Chem. Soc. 127, 13134-13135
Dobrzańska, L., Lloyd, G. O., Raubenheimer, H. G. \& Barbour, L. J. (2006). J. Am. Chem. Soc. 128, 698-699.
Dobrzańska, L., Raubenheimer, H. G. \& Barbour, L. J. (2005). Chem. Commun. pp. 5050-5052.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany

[^0]: © 2006 International Union of Crystallography All rights reserved

